The Journal of Nutrition Biochemical, Molecular, and Genetic Mechanisms (n-3) PUFA Alter Raft Lipid Composition and Decrease Epidermal Growth Factor Receptor Levels in Lipid Rafts of Human Breast Cancer Cells

نویسندگان

  • Patricia D. Schley
  • David N. Brindley
  • Catherine J. Field
چکیده

To determine the mechanism by which the (n-3) fatty acids (FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) decrease proliferation and induce apoptosis in MDA-MB-231 human breast cancer cells, we examined the effects of EPA and DHA on the lipid composition of lipid rafts as well as epidermal growth factor receptor (EGFR) raft localization and phosphorylation. (n-3) FA (a combination of EPA and DHA) inhibited (P , 0.05) the growth of MDA-MB-231 cells by 48–62% in the presence and absence, respectively, of linoleic acid (LA). More EPA and DHA were incorporated into lipid rafts isolated from MDA-MB-231 cells after treatment with (n-3) FA compared with cells treated with LA (P , 0.05). EPA and DHA treatment decreased (P,0.05) lipid raft sphingomyelin, cholesterol, and diacylglycerol content and, in the absence of LA, EPA and DHA increased (P , 0.05) raft ceramide levels. Furthermore, there was a marked decrease in EGFR levels in lipid rafts, accompanied by increases in the phosphorylation of both EGFR and p38 mitogen-activated protein kinase (MAPK), in EPA1DHA-treated cells (P , 0.05). As sustained activation of the EGFR and p38 MAPK has been associated with apoptosis in human breast cancer cells, our results indicate that (n-3) FA modify the lipid composition of membrane rafts and alter EGFR signaling in a way that decreases the growth of breast tumors. J. Nutr. 137: 548–553, 2007.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway

Matrix metalloproteinase-1 (MMP-1) has been identified as an important participant in tumor invasion, metastasis and angiogenesis. The purpose of the present study was to investigate the effects of epidermal growth factor receptor (EGFR) localization to lipid rafts on signaling pathways involved in the regulation of MMP-1 expression in SiHa cells, a cervical cancer cell line. EGFR activation by...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Bone morphogenic protein receptor type 1a (BMPR1A) and Caveolin-1 associated with trastuzumab resistance of breast cancer cells

Trastuzumab is a specific monoclonal antibody used for therapeutic of the human epidermal growth factor receptor 2 (HER-2) -positive metastatic breast cancer. But, resistance to trastuzumab is a major obstacle in clinical efficiency.  During the past years, several studies have been done to find the mechanisms contributing to trastuzumab resistance. Previous studies have highlighted that bone m...

متن کامل

Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts.

Polyunsaturated fatty acids, including docosahexaenoic acid (DHA, 22:6n-3), modulate immune responses and exert beneficial immunosuppressive effects, but the molecular mechanisms inhibiting T-cell activation are not yet elucidated. Lipid rafts have been shown to play an important role in the compartmentalization and modulation of cell signaling. We investigated the role of DHA in modulating the...

متن کامل

Fibroblast growth factor-2-induced signaling through lipid raft-associated fibroblast growth factor receptor substrate 2 (FRS2).

The plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these membrane microdomains are recognized to be sites of localized signal transduction for a number of extracellular stimuli. We have previously shown that fibroblast growth factor-2 (FGF2) induced a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007